Kuakua Chatbot based on UniLM

Qian Cao, Chuhao Jin, Xiaodong Liu 2021.6.8

Gaoling School of Artificial Intelligence Renmin University of China

- 1. Motivation
- 2. Unified Language Model
- 3. Experiments
- 4. Future Work

Motivation

Motivation

名校生抑郁: "天之骄子"的价值困境

原创 人大新闻系 RUC新闻坊 5月15日

...

为什么要做夸夸聊天机器人?

- ・可以缓解压力
- · 被夸是有治愈作用的,当一个人自我否定时,被夸能修复受挫的 自尊心,也能让我们产生"我还不错"的喜悦感

- Language Model (LM)
 - \Rightarrow learn contextualized text representations
- Prediction tasks and training objectives:

	ELMo	GPT	BERT	UniLM
Left-to-Right LM	~	✓		\checkmark
Right-to-Left LM	\checkmark			\checkmark
Bidirectional LM			\checkmark	\checkmark
Sequence-to-Sequence LM				\checkmark

Table 1: Comparison between language model (LM) pre-training objectives.

• UNIfied pre-trained Language Model (UNILM) \Rightarrow for both NLU and NLG

- UNIfied pre-trained Language Model (UNILM) \Rightarrow for both NLU and NLG
- a multi-layer Transformer network, 3 types of unsupervised language modeling objectives

- UNIfied pre-trained Language Model (UNILM) \Rightarrow for both NLU and NLG
- a multi-layer Transformer network, 3 types of unsupervised language modeling objectives

Backbone Network	LM Objectives of Unified Pre-training	What Unified LM Learns	Example Downstream Tasks	
Transformer with shared parameters for all LM objectives	Bidirectional LM	Bidirectional encoding	GLUE benchmark Extractive question answering	
	Unidirectional LM	Unidirectional decoding	Long text generation	
	Sequence-to-Sequence LM	Unidirectional decoding conditioned on bidirectional encoding	Abstractive summarization Question generation Generative question answering	

Table 2: The unified LM is jointly pre-trained by multiple language modeling objectives, sharing the same parameters. We fine-tune and evaluate the pre-trained unified LM on various datasets, including both language understanding and generation tasks.

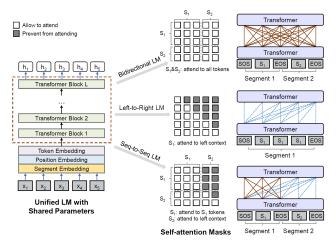


Figure 1: Overview of unified LM pre-training. The model parameters are shared across the LM objectives (i.e., bidirectional LM, unidirectional LM, and sequence-to-sequence LM). We use different self-attention masks to control the access to context for each word token. The right-to-left LM is similar to the left-to-right one, which is omitted in the figure for brevity.

1. Input Representation

- Input sequence $x = x_1 \cdots x_{|x|}$ \Rightarrow a contextualized vector representation
- [SOS] and [EOS]: [EOS] not only marks the sentence boundary in NLU tasks, but also is used to learn when to terminate the decoding process in NLG tasks
- token embedding + position embedding + segment embedding

▶ Framework

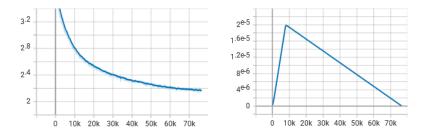
2. Backbone Network: Multi-Layer Transformer

$$\cdot \{\mathbf{x}_{i}\}_{i=1}^{|x|} \Rightarrow \mathbf{H}^{0} = [\mathbf{x}_{1}, \cdots, \mathbf{x}_{|x|}] \Rightarrow \mathbf{H}^{l} = [\mathbf{h}_{1}^{l}, \cdots, \mathbf{h}_{|x|}^{l}]$$
$$\mathbf{H}^{l} = \text{Transformer }_{l} (\mathbf{H}^{l-1}), l \in [1, L]$$
$$\mathbf{Q} = \mathbf{H}^{l-1} \mathbf{W}_{l}^{Q}, \quad \mathbf{K} = \mathbf{H}^{l-1} \mathbf{W}_{l}^{K}, \quad \mathbf{V} = \mathbf{H}^{l-1} \mathbf{W}_{l}^{V}$$
$$\cdot \mathbf{M}_{ij} = \begin{cases} 0, & \text{allow to attend} \\ -\infty, & \text{prevent from attending} \end{cases}$$
$$\mathbf{A}_{l} = \text{softmax} \left(\frac{\mathbf{Q}\mathbf{K}^{\top}}{\sqrt{d_{k}}} + \mathbf{M} \right) \mathbf{V}_{l}$$

Framework

3. Pre-training Objectives

- Unidirectional LM: L2R and R2L LM objectives
- Bidirectional LM
- Sequence-to-Sequence LM
- Next Sentence Prediction (for bidirectional LM)


▶ Framework

4. Setup

- \cdot 1/3 of the time for bidirectional LM objective
- 1/3 of the time sequence-to-sequence LM objective
- 1/6 for both left-to-right and right-to-left LM objectives
- $BERT_{LARGE}$ initialized
- 24-layer Transformer, 1024 hidden size, 16 attention heads, 340M parameters in total
- 15% token masking probability, 80% of the time randomly mask one token and 20% of the time mask a bigram or a trigram

Experiments

- Douban Kuakua Group, 6w+ utterances, 20+MB
- hidden size: 768, attention heads: 12, hidden layers: 12
- 50 epochs: loss & learning rate

user:我要死了			
chatbot:你真是个勇敢的人,一	·定会有好事发生的		
user:我要累死了			
chatbot:我们都是天使			
user:我只想休息			
chatbot:谢谢		11 巫 //+	
user:明天要去吃好吃的		user:我爱你	
chatbot:好棒		chatbot:我也是	
user:今天nlp展示,好紧张		user:我喜欢你	
chatbot:我也是,但是你不会放弃自己的想法		chatbot:我也喜欢你	
user:明天要考试	user:我很孤独,也	很寂寞,没有朋友	
chatbot:加油! 我也是考了三次	chatbot:我们都是独一无二的人,你也很优秀哦!		

Future Work

- ·训练是针对单轮对话进行的,未来会探索多轮夸夸对话;
- ·收集更多数据,训练效果更好的基于 unilm 的夸夸对话模型;
- ·探索多模态夸夸,使模型具有表情包等图像理解能力。

THANKs!