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Unified Language Model



Unified Language Model

- Language Model (LM)
= learn contextualized text representations

- Prediction tasks and training objectives:

ELMo GPT BERT UNILM

Left-to-Right LM v v v
Right-to-Left LM v v
Bidirectional LM v v
Sequence-to-Sequence LM v

Table 1: Comparison between language model (LM) pre-training objectives.



Unified Language Model

- UNIfied pre-trained Language Model (UNILM)
= for both NLU and NLG



Unified Language Model

- UNIfied pre-trained Language Model (UNILM)
= for both NLU and NLG

- a multi-layer Transformer network, 3 types of unsupervised
language modeling objectives



Unified Language Model

- UNIfied pre-trained Language Model (UNILM)
= for both NLU and NLG

- a multi-layer Transformer network, 3 types of unsupervised
language modeling objectives

Backbone LM Objectives of What Unified LM Learns  Example Downstream Tasks

Network Unified Pre-training

Bidirectional LM Bidirectional encoding GLUE benchmark .
Transformer Extractive question answering
with shared Unidirectional LM Unidirectional decoding Long text generation
parameters
for all LM Unidirectional decoding Abstractive summarization
objectives Sequence-to-Sequence LM conditioned on Question generation

bidirectional encoding Generative question answering

Table 2: The unified LM is jointly pre-trained by multiple language modeling objectives, sharing the
same parameters. We fine-tune and evaluate the pre-trained unified LM on various datasets, including
both language understanding and generation tasks.



Unified Language Model
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Figure 1: Overview of unified LM pre-training. The model parameters are shared across the LM
objectives (i.e.. bidirectional LM. unidirectional LM, and sequence-to-sequence LM). We use different
self-attention masks to control the access to context for each word token. The right-to-left LM is
similar to the left-to-right one, which is omitted in the figure for brevity.
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Unified Language Model

1. Input Representation

- Input sequence = 1 - - |4
= a contextualized vector representation

- [SOS] and [EOS]:
[EOS] not only marks the sentence boundary in NLU tasks, but
also is used to learn when to terminate the decoding process in
NLG tasks

- token embedding + position embedding + segment embedding

» Framework



Unified Language Model

2. Backbone Network: Multi-Layer Transformer
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Unified Language Model

3. Pre-training Objectives
- Unidirectional LM: L2R and R2L LM objectives
- Bidirectional LM
+ Sequence-to-Sequence LM

- Next Sentence Prediction (for bidirectional LM)

> Framework



Unified Language Model

4, Setup

- 1/3 of the time for bidirectional LM objective

- 1/3 of the time sequence-to-sequence LM objective

- 1/6 for both left-to-right and right-to-left LM objectives
- BERTr srcE initialized

- 24-layer Transformer, 1024 hidden size, 16 attention heads, 340M
parameters in total

- 15% token masking probability, 80% of the time randomly mask
one token and 20% of the time mask a bigram or a trigram
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Experiments




- Douban Kuakua Group, 6w+ utterances, 20+MB
- hidden size: 768, attention heads: 12, hidden layers: 12

- 50 epochs: loss & learning rate
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Future Work
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